Pulitzer winning climate news.
facebook twitter subscribe
view counter

EagleFordProjectPreviewBlock

BloombergLegacyPreviewBlock

BusinessDeveloperAd



CleanBreakAdAmazon

Donate to InsideClimate News through our secure page on Network for Good.

250-500 Million MW of Extra Energy Now Roiling the Earth’s Climate System

As extreme weather events multiply, scientists are still in the early stages of understanding how more energy is influencing complex weather phenomena

Jul 29, 2011

Despite America's intense political polarization over climate change, the scientific measurement of global warming is not in dispute. Since 1900, the earth as a whole has warmed by 1.4 degrees Fahrenheit, an empirical fact that has become an official U.S. government statistic of the National Oceanic and Atmospheric Administration.

It is a seemingly minuscule and barely perceptible increase of average temperature, but spread over the entire surface of the earth that extra energy accumulates into an enormous force. Just what the impacts are on the climate system is something that scientists are only now beginning to understand.

"Seemingly very small changes can have very big implications," said Gerald Meehl, a senior scientist at the National Center for Atmospheric Research (NCAR) in Boulder, Colo.

The 1.4 degree rise in average temperature means the entire surface of earth's 500 million square kilometers has become home to between 250 and 500 million megawatts of energy that used to escape the planet's atmospheric shell into space. That's an extra 0.5 to 1 watts, or roughly one Christmas light bulb's worth of heat, falling on every square meter of land and sea.

"It might seem small, but it actually is very significant when you look at earth's history," said Pushker Kharecha, a climate scientist at the NASA Goddard Institute for Space Studies and The Earth Institute at Columbia University. For the climate to be relatively stable, he said, the energy balance must remain "within a small fraction of a watt [per square meter]."

"No question about it, it's a lot of energy," said Warren Washington, a senior scientist at NCAR.

In a year's time, this energy imbalance is roughly equivalent to 15 to 30 times the global energy consumption of 2007, or to the amount of power generated by 250,000 to a half a million large coal-fired power plants.

Natural fluctuations in solar output are "somewhat" responsible, Kharecha said. But "when we look at the interdecadal trends, it's very clear that the human forcing is what's causing the vast majority of change in recent decades."

"What humans are doing is creating an imbalance," said Jeff Kiehl, a senior scientist in the climate modeling section of NCAR. "We're ... putting more greenhouse gases into the atmosphere, which limits the amount of flow of infrared radiation [heat] going back out into space."

As a result, the planet as a whole is heating up, Kiehl said, because "[earth's] response is to warm up or cool down in response to any energy imbalance."

"It's a fundamental law of physics that energy is conserved. It can't be created or destroyed. It can be transferred or transformed," he continued. "If we're trapping infrared radiation on this planet that energy has to go somewhere. It can't just disappear."

Extra Energy and Extreme Weather

So where exactly does all the extra energy go and how does it influence earth's complex weather phenomena?

"Some goes into the oceans and some as latent heat in the atmosphere, and that energy is available to be transformed into things like storms," Kiehl explained.

Scientists say most of the extra energy ends up warming the world's seas because of water's enormous capacity to trap heat. The rest goes into the ground or toward raising temperatures in the atmosphere. That captured heat can melt ice caps and evaporate water, creating additional water vapor, a greenhouse gas.

The extra moisture can also power climatic extremes, including severe thunderstorms.

Consistent with this picture of rising heat and moisture in the atmosphere, Kiehl said, is that the "frequency and intensity of extreme weather events should also increase," including record heat waves, floods, blizzards and droughts.

"The big question is, is that what we're seeing today?"   

Climate scientists say the lack of uniform and lengthy historical data and the complexity of the climate system makes it difficult to draw a cause-and-effect relationship between the extra heat and extreme weather events, which seem to be occurring with alarming frequency in recent years.

"There's a lot of complexity," said Kevin Trenberth, senior scientist at NCAR. "You can't understand the [climate] system with simple links."

But amid the current wild extremes the question is growing in importance. A quick look at some recent devastating weather events reveals why:

Comment space is provided for respectful discourse. Please consult our comment policies for more information. We welcome your participation in civil and constructive discussions.