CO2 GREENHOUSE UPDATE 1985

• Lamont-Doherty Research

• CRSL Research
 + Contribution to DOE State of the Art Report
 + Oceanic effects on transient climate change

• Budget Status, Proposal

• DOE and other reports

• Recent research developments

October 4, 1985
New York City
B. P. Flannery
SEASONAL STUDY OF THE CO2 AND TRACER DISTRIBUTIONS IN THE HIGH LATITUDE ATLANTIC, W. Broecker and T. Takahashi

- Goal: gain better understanding of the air-sea exchange of CO2 in high latitude surface waters

- First systematic study of seasonal CO2 chemistry in North Atlantic

- Field studies complete March 1985

- Related studies
 + North Pacific (DOE support)
 + South Pacific (EXXON, DOE)
SAMPLING POSITIONS IN THE NORTH ATLANTIC

- Transport Freight Limited ships, Greenland stations
LARGE SEASONAL VARIATION IN P(CO2)

- Previously only summer data available, low values assumed to persist all year.
PRINCIPAL FINDINGS, CONCLUSIONS

- Large, unexpected seasonal variation in P(CO2) in high latitude surface waters

- Standard thermodynamic models for CO2 variation cannot explain observations
 + Biology and mixing required

- Implication for CO2 uptake by ocean two sided
 + Lower exchange from air to surface ocean
 + Higher exchange from surface to deep water

- Results need to be assessed in quantitative models of oceanic carbon cycle
AVAILABLE COMPILATION OF OCEANIC P(CO2)

- GEOSECS data (Atlantic 72, Pacific 73, Indian 78)

- No information on seasonal variation

- Much additional data acquired, but not compiled
LAMONT PROPOSAL 1986: SEASONAL AND GEOGRAPHICAL MAP OF P(CO2) IN SURFACE WATERS

• Compilation of seasonal P(CO2) map
 + All available data
 + 10 x 10 degree grid
 + February, August

• Objectives
 + Differentiate regional behavior, important effects
 + Develop a seasonal model to explain variation
 + Re-examine oceanic carbon cycle
DOE STATE-OF-THE-ART REPORT
MODEL PROJECTIONS OF TIME DEPENDENT RESPONSE TO INCREASING CARBON DIOXIDE
M.I. HOFFRERT (NYU) and B.P. FLANNERY

- Observational data for modern climate (1850-1980)
- Elements of transient climate models
- Disagreement among results for steady state models
- Hindcasting for model verification
- Forecasting of future change, first effects
- Conclusions and Recommendations
HISTORICAL DATA FOR TRANSIENT MODEL VERIFICATION

VARIATION OF GLOBAL MEAN TEMPERATURE 1880-1980

- Temperature change +0.5 C (1980-1880)
- Factors besides CO2 must operate
 + volcanoes, solar variability, oceanic upwelling
- Other archived data exist, Sea Ice, Regional Temperature, ...
 + Less reliably predicted by models
 + Display more variability, as measured
ELEMENTS OF STEADY STATE AND TRANSIENT MODELS

- **Steady State response CO2 addition**
 - IR decreases, temperature rises
 - Additional feedbacks
 - Atmospheric water vapor
 - Snow/ice cover
 - Cloudiness amounts, types

- **Transient evolution, timescales**
 - +Land, 1 week
 - +Atmosphere, 1 month
 - +Ocean mixed layer, 8 yrs
 - +Deep ocean, (1-10) thousand yrs
GENERAL CIRCULATION MODELS DISAGREE ON
STEADY STATE RESPONSE 2xCO2

- Basic results
 + Global mean temperature rise 1.5-4.5 C
 + Warming greater at poles

- Major disagreement between models

- Sources of disagreement
 + Treatment of oceanic transport
 + Treatment of cloudiness feedback

- Recent models show 4-5 C Global warming
 + Include other trace gasses
HINDCASTING RESULTS / VERIFICATION

- Models claim to detect CO2 effect, but required other types of forcing
 + volcanoes, solar variation, (oceanic upwelling)
- Spurious agreement in conclusions
 + Treatment of forcing differs
 + Observational data differs
- Consensus view CO2 warming not yet confirmed by observation
FORECASTING RESULTS/ PREDICTION AND FIRST EFFECTS

- Requires forecast of future CO2 emissions

- Ocean delays CO2 warming
 + As yet unrealized warming could be substantial

- Results from General Circulation Model still unavailable
 + Inclusion oceanic transport challenging task
CONCLUSIONS/RECOMMENDATIONS

- Modern climate is forced by factors other than CO2
- Oceanic response delays warming by at least 10 years
- Consensus prediction 1 C warming (1860-2000), 2-5 C (2100)
- To date models do not provide unique forecasts
- Model development:
 + GCM results display substantial discrepancies
 + Research requires a hierarchy of climate models
 + Reliable GCM results are at least 10 years away
- Must develop improved understanding of oceanic transport
- Must develop observationally based strategies for model verification
CR RESEARCH 1984-85

- Continuing role in the environmental impact assessment of the Natuna Gas Project

- Preparation of the "Transient Climate Models" chapter of the DOE State of the Art Report on CO2 Research

- Role of oceanic effects on climate change
 + Collaborative development of a sophisticated Energy Balance Climate model (Livermore, NYU)
 + Studies of thermal lag from oceanic effects
EMERGING DILEMMA FOR CLIMATE MODELS:
WHY HASN'T WARMING BEEN OBSERVED?

- Recent GCM models predict greater sensitivity
 warming 2xCO2 (1850-1980)
 2-3 C 0.8 C marginally detectable
 4-5 C 1.6 C readily detectable

- Proposed solution, delay from oceanic thermal buffering
 much greater than found in previous studies

- Requires strong thermal coupling between surface
 and deep ocean
MODELS INCLUDING ENERGY TRANSFER TO DEEP OCEAN PREDICT LONG DELAYS FOR ATMOSPHERIC WARMING

- Purely Diffusive (PD) Model (Hansen 1984)

- Pattern of global response
 + Average lag time 125 years
THE UPWELLING DIFFUSION MODEL FOR HEAT TRANSFER INTO THE MIXED LAYER AND DEEP OCEAN

- Schematic of model (Hoffert, Callegari, Hseih 1980)

- Timescales
 + Mixed layer heat exchange, 10 years (heat capacity)
 + Diffusion time 5000 years
 + Upwelling time 1000 years
COMPARISON OF STEADY STATE SOLUTIONS
UPWELLING DIFFUSION (UD) AND PURELY DIFFUSIVE (PD) MODELS

- Current climate, average surface temperature 15°C

- Models with 3°C surface warming
COMPARISON OF STEADY STATE SOLUTIONS
UPWELLING DIFFUSION (UD) AND PURELY DIFFUSIVE (PD) MODELS

- Current climate, average surface temperature 15°C

- Temperature change vs depth for 3°C surface warming
 + PD models require maximum heating
TRANSIENT EVOLUTION, COMPARISON WITH HANSEN

- Addition of upwelling decreases response time

- Recalibrate Diffusion coefficient using UD model

- Lag time decades
HISTORICAL AND FORECAST CO2 INCREASE 1850-2100

- CO2 record and forecasts from Weubbles (SOA Report)

- Corresponding change in equilibrium temperature

\[+\Delta T = \Delta T(2\times\text{CO2})\times\ln(\text{CO2 ppm}/540 \text{ ppm}) \]
TEMPERATURE CHANGE WITH UD MODEL

- Surface temperature variation
 + Lag time 30 years in 1983
 but increases with time
 (poorly defined concept)

- Profile of ocean warming (year 2100)
TEMPERATURE CHANGE FOR VARIOUS CO2 FORECASTS

- Surface temperature variation
 + (1850-1985) 0.52 C
 + 1 C warming (2007, 2018, 2033)

- Lag time decades, not hundreds of years
CONCLUSIONS FROM 1D OCEAN MODEL

- Purely diffusive models overestimate response time
 + Improper steady state solution
 + Overestimate diffusion coefficient

- Lag time poorly defined concept to express delay in warming caused by oceans

- Response delayed by decades, 30 years, not centuries

- Simple models can contribute to understanding of oceanic effects
CR PROGRAM 1986

- Present results Transient Climate models
 + Ocean modelling conference Woods Hole late 1985
 + Manuscript in preparation

- Continuing development of Coupled atmosphere ocean EBM

- Monitor research and reports (SOA)
CO2 GREENHOUSE BUDGET, PROPOSAL

<table>
<thead>
<tr>
<th>CR EFFORT</th>
<th>Projected 1985</th>
<th>Proposed 1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional time</td>
<td>132 K$</td>
<td>140 K$</td>
</tr>
<tr>
<td>Consultants/Purchased Research</td>
<td>14 K$</td>
<td>35 K$</td>
</tr>
<tr>
<td>Travel</td>
<td>7 K$</td>
<td>10 K$</td>
</tr>
<tr>
<td>Other</td>
<td>4 K$</td>
<td>5 K$</td>
</tr>
<tr>
<td>Total CR</td>
<td>157 K$</td>
<td>190 K$</td>
</tr>
<tr>
<td>Lamont-Doherty</td>
<td></td>
<td>60 K$</td>
</tr>
<tr>
<td>Total</td>
<td>250 K$</td>
<td>250 K$</td>
</tr>
</tbody>
</table>