Pulitzer winning climate news.
facebook twitter subscribe
view counter

EagleFordProjectPreviewBlock

BloombergLegacyPreviewBlock

BusinessDeveloperAd



CleanBreakAdAmazon

Donate to InsideClimate News through our secure page on Network for Good.

Keystone XL Would Not Use Most Advanced Spill Protection Technology

It would cost less than $10 million—roughly 0.2 percent of the Keystone XL's budget—to add safeguards to protect the crucial Ogallala aquifer from spills.

Dec 20, 2012
Workers examine pipe being used for the southern leg of the Keystone XL pipeline

In 1998, activists in Austin, Texas filed a lawsuit to protect their local aquifer from a proposed gasoline pipeline. By the time the project was built, the operator had been forced to add $60 million in safety features, including sensor cables that could detect leaks as small as three gallons a day. Some say the Longhorn pipeline is the safest pipeline in Texas, or perhaps the nation.

Now a much larger pipeline—the Keystone XL—is being proposed across the Ogallala/High Plains aquifer, one of the nation's most important sources of drinking and irrigation water. Yet none of the major features that protect Austin's much smaller aquifer are included in the plan. In fact, they haven't even been discussed.

The leak detection technology that will be used on the Keystone XL, for instance, is standard for the nation's crude oil pipelines and rarely detects leaks smaller than 1 percent of the pipeline's flow. The Keystone will have a capacity of 29 million gallons per day—so a spill would have to reach 294,000 gallons per day to trigger its leak detection technology.

The Keystone XL also won't get two other safeguards found on the 19-mile stretch of the pipeline over Austin's aquifer: a concrete cap that protects the Longhorn from construction-related punctures, and daily aerial or foot patrols to check for tiny spills that might seep to the surface.

Experts interviewed by InsideClimate News estimate it would cost less than $10 million—roughly 0.2 percent of the Keystone's $5.3 billion budget—to add external sensor cables, a concrete cap and extra patrols to the 20 miles of the pipeline in Nebraska where a spill would be most disastrous. The water table in that area lies less than 20 feet below the surface and provides ranchers with a steady supply of fresh water.

TransCanada, the company that wants to build the Keystone XL, says the project meets or exceeds federal pipeline standards. In June, Russ Girling, TransCanada's president and CEO, said it will be "the safest, most advanced pipeline ever built in North America."

Spokesman Shawn Howard said trained experts will monitor the pipeline 24/7 from a state-of-the-art control center. His colleague Grady Semmens said operators would shut down the pipeline within 10 minutes of detecting a problem.

TransCanada also has pledged to follow 57 conditions that it says exceed federal standards. That list doesn't include any of the three major safeguards that protect the Austin aquifer. And an analysis last year by the Natural Resources Defense Council found that most of the 57 conditions are identical to existing federal regulations.

"TransCanada applies industry best practices, many of which exist due to the potential lack of federal regulations, advances in technology, construction practices and methodologies from both a safety and quality perspective," Howard said in an email.

Environmental groups and landowners have been fighting the Keystone XL project for years, but the possibility of adding safeguards like those used on the Longhorn pipeline hasn't been part of the debate.

Most environmental groups want the pipeline stopped altogether, primarily because the Canadian crude oil it will carry has a much larger carbon footprint than conventional oil. NASA climate scientist James Hansen has famously called the pipeline a "fuse to the biggest carbon bomb on the planet."

Carl Weimer, executive director of the Pipeline Safety Trust, said many of the protective measures used on Longhorn could also improve safety on the Keystone XL, as well as other pipelines that cross vulnerable lands. His nonprofit, nonpartisan group has spent years advocating for stronger federal pipeline construction and safety rules. "We just assume pipelines will end up in a lot of places, so let's just make them as safe as possible."

The industry expects to build or repurpose more than 10,000 miles of pipelines over the next five years to transport heavy crude from Canada's oil sands region.

Weimer said it often takes years to change even a minor regulation, because the rule-making process is slowed by the "big gorilla in the room"—industry representatives who are part of the process and are reluctant to adopt changes that could impact their bottom line.

"Cost is the major factor," said Mohammad Najafi, a civil engineering professor at the University of Texas-Arlington and editor-in-chief of the Journal of Pipeline Systems Engineering and Practice. Najafi declined to comment on the Keystone XL, but said that, in general, operators "that don't take extra measures do so because they're private companies with investors, and they cut costs as much as they can."

But Najafi warned that increased spending doesn't automatically boost pipeline safety, because resources could be wasted on badly designed technologies.

Najmedin Meshkati, a University of Southern California civil engineering professor who studies workplace safety culture, said even the best technology can't guarantee safety. "The human factor is really where the rubber meets the road….No piece of hardware can replace [a] good safety culture."

Comment space is provided for respectful discourse. Please consult our comment policies for more information. We welcome your participation in civil and constructive discussions.